184 research outputs found

    A Robust Distributed Model Predictive Control Framework for Consensus of Multi-Agent Systems with Input Constraints and Varying Delays

    Full text link
    This paper studies the consensus problem of general linear discrete-time multi-agent systems (MAS) with input constraints and bounded time-varying communication delays. We propose a robust distributed model predictive control (DMPC) consensus protocol that integrates the offline consensus design with online DMPC optimization to exploit their respective advantages. More precisely, each agent is equipped with an offline consensus protocol, which is a priori designed, depending on its immediate neighbors' estimated states. Further, the estimation errors propagated over time due to inexact neighboring information are proved bounded under mild technical assumptions, based on which a robust DMPC strategy is deliberately designed to achieve robust consensus while satisfying input constraints. Moreover, it is shown that, with the suitably designed cost function and constraints, the feasibility of the associated optimization problem can be recursively ensured. We further provide the consensus convergence result of the constrained MAS in the presence of bounded varying delays. Finally, two numerical examples are given to verify the effectiveness of the proposed distributed consensus algorithm

    Preparative Separation and Enrichment of Syringopicroside from Folium syringae Leaves with Macroporous Resins

    Get PDF
    Syringopicroside is the major constituent in Folium syringae leaves with known pharmacological activities. In this study, a simple method for preparative separation of syringopicroside from F. syringae leaves with macroporous resins was developed. Adsorption characteristics of syringopicroside on six types of macroporous resins, including ADS-8, ADS-17, D141, NKA-9, HPD450, and HPD600, have been compared, among which D141 resin showed the best adsorption and desorption capacities for syringopicroside. Adsorption isotherms were used to D141 resin at different temperatures and fitted well to Langmuir and Freundlich equations. Dynamic adsorption and desorption tests were performed on D141 resin-packed column to optimize the separation process of syringopicroside. After one run with D141 resin, the content of syringopicroside was increased 24-fold from 2.32% to 55.74% with a recovery yield of 92.16%. The chromatographic process optimized in this work avoids toxic organic solvent and, thus, is a promising basis for large-scale preparation of syringopicroside

    Delay-agnostic Asynchronous Distributed Optimization

    Full text link
    Existing asynchronous distributed optimization algorithms often use diminishing step-sizes that cause slow practical convergence, or fixed step-sizes that depend on an assumed upper bound of delays. Not only is such a delay bound hard to obtain in advance, but it is also large and therefore results in unnecessarily slow convergence. This paper develops asynchronous versions of two distributed algorithms, DGD and DGD-ATC, for solving consensus optimization problems over undirected networks. In contrast to alternatives, our algorithms can converge to the fixed-point set of their synchronous counterparts using step-sizes that are independent of the delays. We establish convergence guarantees under both partial and total asynchrony. The practical performance of our algorithms is demonstrated by numerical experiments

    Decentralized Composite Optimization in Stochastic Networks: A Dual Averaging Approach with Linear Convergence

    Full text link
    Decentralized optimization, particularly the class of decentralized composite convex optimization (DCCO) problems, has found many applications. Due to ubiquitous communication congestion and random dropouts in practice, it is highly desirable to design decentralized algorithms that can handle stochastic communication networks. However, most existing algorithms for DCCO only work in time-invariant networks and cannot be extended to stochastic networks because they inherently need knowledge of network topology a priori\textit{a priori}. In this paper, we propose a new decentralized dual averaging (DDA) algorithm that can solve DCCO in stochastic networks. Under a rather mild condition on stochastic networks, we show that the proposed algorithm attains global linear convergence\textit{global linear convergence} if each local objective function is strongly convex. Our algorithm substantially improves the existing DDA-type algorithms as the latter were only known to converge sublinearly\textit{sublinearly} prior to our work. The key to achieving the improved rate is the design of a novel dynamic averaging consensus protocol for DDA, which intuitively leads to more accurate local estimates of the global dual variable. To the best of our knowledge, this is the first linearly convergent DDA-type decentralized algorithm and also the first algorithm that attains global linear convergence for solving DCCO in stochastic networks. Numerical results are also presented to support our design and analysis.Comment: 22 pages, 2 figure

    Genome-Wide Association Study and Transcriptome Differential Expression Analysis of the Feather Rate in Shouguang Chickens

    Get PDF
    The feather rate phenotype in chicks, including early-feathering and late-feathering phenotypes, are widely used as a sexing system in the poultry industry. The objective of this study was to obtain candidate genes associated with the feather rate in Shouguang chickens. In the present study, we collected 56 blood samples and 12 hair follicle samples of flight feathers from female Shouguang chickens. Then we identified the chromosome region associated with the feather rate by genome-wide association analysis (GWAS). We also performed RNA sequencing and analyzed differentially expressed genes between the early-feathering and late-feathering phenotypes using HISAT2, StringTie, and DESeq2. We identified a genomic region of 10.0–13.0 Mb of chromosome Z, which is statistically associated with the feather rate of Shouguang chickens at one-day old. After RNA sequencing analysis, 342 differentially expressed known genes between the early-feathering (EF) and late-feathering (LF) phenotypes were screened out, which were involved in epithelial cell differentiation, intermediate filament organization, protein serine kinase activity, peptidyl-serine phosphorylation, retinoic acid binding, and so on. The sperm flagellar 2 gene (SPEF2) and prolactin receptor (PRLR) gene were the only two overlapping genes between the results of GWAS and differential expression analysis, which implies that SPEF2 and PRLR are possible candidate genes for the formation of the chicken feathering phenotype in the present study. Our findings help to elucidate the molecular mechanism of the feather rate in chicks.</p
    corecore